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QUESTIONS TO ANSWER
• First order circuits

– How to analyze and solve the step response of RL and RC 
circuits?

– How to solve an electric circuit with multiple switches?

• Second order circuits

– How to analyze and solve the natural response of RLC 
circuits with different voltage responses?
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STEP RESPONSE FOR RL CIRCUIT (1)

• Now let's look at a circuit with an inductor instead of 
a capacitor. We'll start with the simplest possible 
circuit:
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STEP RESPONSE FOR RL CIRCUIT (2)

• From KVL:

• Compare this to

• from the RC circuit. It's not quite the same - but we 
can make it closer…
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STEP RESPONSE FOR RL CIRCUIT (3)

• NOW this is the same equation - which means it 
must have the same form of solution 
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EXAMPLE OF STEP RESPONSE FOR RL CIRCUIT 
(1)
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EXAMPLE OF STEP RESPONSE FOR RL CIRCUIT 
(2)

1. Find the initial condition.

2. Find the steady state solution.
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EXAMPLE OF STEP RESPONSE FOR RL CIRCUIT 
(3)

3. Find the time constant

4. Write the solution,
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EXAMPLE OF STEP RESPONSE FOR RL CIRCUIT 
(4)

5. Plug the two boundary values (the values at t = 0 and 
t = ) into the solution to find A and B. Use the 
steady state value first!

6. Make sure you answered the question being asked!
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GENERAL SOLUTION FOR 
NATURAL AND STEP RESPONSE 

Natural Response

Step Response
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t 

v+
–

–

+R
L

vs

v

–

+

R C

Is

v

–

+

R L

vs=0

v

–

+

R C

Is=0

EE215 12
© TC Chen UWB 2010



5/25/2010

7

GENERAL SOLUTION FOR 
NATURAL AND STEP RESPONSE (4)

• … in words:   
0

)()( 0

tt
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


 

The unknown 
variable as a function 
of time

The final value 
of the variable

The difference 
between initial and 
final value

Exponential 
decay= + 
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SEQUENTIAL SWITCHING (1)

• More than one switching operation in 
sequence.

• Consequence:

• Approach: 
–

–

–
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SEQUENTIAL SWITCHING (2)

1. Find Thévenin equivalent w.r.t. C:

10k 20k
7i

5µF

i

10V

–

+
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SEQUENTIAL SWITCHING (3)

• 2. Find (unbounded) response:

– For t  0: 

– Solution:
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SEQUENTIAL SWITCHING (4)

• 3. At what time will circuit fail if capacitor breaks 
down at 150V?

–5k5µF10V

–

+
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NATURAL AND STEP RESPONSES OF RLC 
CIRCUITS

• Circuits with two energy storage elements are 
called second order circuits, because they give 
rise to second order linear differential equations. 
The most interesting behavior of these circuits 
happens in the RLC circuit, with an inductor and a 
capacitor.

• Second order circuits are solved in much the 
same way as first order circuits, by writing the 
form of the solution and then finding the 
coefficients from initial and steady state 
conditions. It's a little more complicated.
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NATURAL AND STEP RESPONSES OF RLC 
CIRCUITS

• Example: parallel RLC circuit

• Natural response: 
– v0 :

– i0 :

RLC v

–

+
iC iL iR

v0

–

+

i0
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HOW DOES SOLUTION LOOK LIKE?

Special cases:

1. C = 0 (and v0 = 0) 

2. L =  (and i0 = 0) 

3. R = 

•

•

•

•
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GENERAL SOLUTION OF THE 
PARALLEL RLC CIRCUIT (1)

• Node voltage method:

• Differentiate:

• Divide by C and rearrange:

• Ordinary second-order differential equation

• 
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GENERAL SOLUTION OF THE 
PARALLEL RLC CIRCUIT (2)

• Assumption: solution is of the form v(t) = A est

with A, s unknown constants

• Plug into equation above:

• Rearrange:

• In general, A  0, est  0 thus

• “Characteristic Equation”
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SOLUTION TO 
CHARACTERISTIC EQUATION (1)

• Often we use the following parameters:

– Neper frequency:

– Resonant radian frequency:

– Characteristic roots:
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SOLUTION TO 
CHARACTERISTIC EQUATION (2)

• Three cases:
2 – 0

2 > 0 :
2 – 0

2 = 0 :
2 – 0

2 < 0 :

• Solutions:

with some parameters

• In summary, the natural response of the parallel 
RLC circuit is
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SOLUTION TO 
CHARACTERISTIC EQUATION (3)

• The voltage is of the form

• Determine A1 and A2:

– Initial condition of circuit poses two constraints

• We need to solve:
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SOLUTION TO 
CHARACTERISTIC EQUATION (4)

• KCL:
• Thus we have a linear system of 2 equations 

with 2 unknowns:

• This system can be solved for A1 and A2.
• Summary:

1.
2.
3.
4.
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PARALLEL RLC CIRCUIT 
EXAMPLE/OVERDAMPED

• R = 200, L = 50mH, C = 0.2µF, V0=12V, I0 = 

30mA

RLC v

–

+
iC iL iR

V0

–

+

I0
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PARALLEL RLC CIRCUIT 
EXAMPLE/OVERDAMPED

• Initial currents in each branch:






• Initial dv/dt :


• Determine A1 and A2:



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PARALLEL RLC CIRCUIT 
EXAMPLE/OVERDAMPED
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